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Abstract— Infrastructure-as-a-Service (IaaS) cloud computing 
offers new possibilities to scientific communities. One of the most 
significant is the ability to elastically provision and relinquish 
new resources in response to changes in demand. In our work, we 
develop a model of an “elastic site” that efficiently adapts services 
provided within a site, such as batch schedulers, storage archives, 
or Web services to take advantage of elastically provisioned 
resources. We describe the system architecture along with the 
issues involved with elastic provisioning, such as security, 
privacy, and various logistical considerations. To avoid over- or 
under-provisioning the resources we propose three different 
policies to efficiently schedule resource deployment based on 
demand. 

We have implemented a resource manager, built on the Nimbus 
toolkit to dynamically and securely extend existing physical 
clusters into the cloud. Our elastic site manager interfaces 
directly with local resource managers, such as Torque. We have 
developed and evaluated policies for resource provisioning on a 
Nimbus-based cloud at the University of Chicago, another at 
Indiana University, and Amazon EC2.  

We demonstrate a dynamic and responsive elastic cluster, 
capable of responding effectively to a variety of job submission 
patterns. We also demonstrate that we can process 10 times faster 
by expanding our cluster up to 150 EC2 nodes. 

Cloud computing, Infrastructure-as-a-Service 

I.  INTRODUCTION 
Typical computing resources, including everything from a 

single server to a supercomputer, offer a static and finite set of 
computational, network, and storage capacity to users. Initially, 
a resource is purchased with an estimate for its peak capacity 
with the hope that the average load on the resource stays well 
below that estimate. However, while the computational, 
network, and storage capacity of the resource is static, the 
demand is dynamic. There are times when users or system 
administrators need to find additional resources to meet their 
demands, e.g. to meet a paper deadline [3], handle the 
increased need for computation or storage during an 
experiment, or process increased Website traffic during the 
holiday season.  

Historically, system administrators could only purchase 
more physical resources when the load of a particular resource 
increased beyond its maximum capacity. However, it is 
difficult to estimate the times when the demand will exceed the 

capacity of the resource, most often it is only realized when the 
system crashes under the load. This results in user frustration 
and possibly the loss of user data or business. Purchasing 
additional physical resources is a very cumbersome process 
and usually involves a large amount of time and money: nodes 
must be ordered, delivered to the site, setup and configured, 
added to the cluster and continually maintained. These steps 
can take weeks, if not months to complete. If additional 
resources are purchased it is likely that their regular usage will 
be below peak usage, leaving resources underutilized or idle 
while still drawing power and costing the organization money. 

With Grid computing [7] it became possible to leverage 
existing resources at remote sites when additional capacity was 
required. Although many applications can leverage the Grid 
model, Grid computing has a number of constraints that have 
limited its adoption. A fundamental assumption that Grid 
computing makes is that the control over the mode in which 
remote resources are provided is with the remote site. Grid 
users are not typically given root on remote resources for 
security reasons, and thus it is not always possible to deploy 
custom software stacks or databases required by the 
application. Users also face a potentially infinite set of diverse 
resources that they must port their applications to and validate 
on. Finally, the Grid doesn't offer a way for users to gain access 
to Grid resources on demand.  

Cloud computing enhances the mechanisms for sharing of 
remote resources by providing users with control over the 
remote resources (e.g. control over their configuration). Clouds 
also provide a virtualized platform for users to create and 
manage the software stack from the operating system to the 
applications. This particular type of cloud is known as an 
Infrastructure-as-a-Service (IaaS) cloud, as opposed to 
Platform-as-a-Service (PaaS) or Software-as-a-Service (SaaS) 
clouds. The customizability, complete control over the software 
stack, and on-demand access to IaaS clouds make them an 
attractive solution to the problem of dynamically extending the 
resources of a static site to adjust to changes in demand. 

Elastically extending sites with cloud resources poses a 
number of challenges that must be addressed. First, leveraging 
remote resources highlights the following security concerns: 
how can we establish trust between the site and the added 
remote nodes? How can we provide an environment that would 
allow us to project assumptions underlying security 
mechanisms within the site onto a wide-area network? 



Numerous logistical considerations must be addressed. In 
particular, remote nodes that are provided on-demand must be 
automatically configured to join the site and perform their 
required role (e.g. a cluster worker node). We must also be able 
to correctly identify when nodes are required, the duration for 
which they will be needed, how many nodes should join the 
site, and which cloud providers should be utilized. These 
decisions must balance the cost of integrating remote nodes 
from different cloud providers with the need to efficiently 
process the demand. The cost of integrating cloud nodes is not 
simply the monetary cost, although that may be one factor, the 
cost is also the associated overhead (execution, I/O, or network 
latency) of different cloud providers. 

In our research, we propose a model to elastically extend a 
site by integrating remote cloud resources on demand. Our 
model is neither application- or cloud-specific, instead we 
propose an additional layer capable of monitoring the demand 
of applications and responding by acquiring or releasing cloud 
nodes. We implement and evaluate an elastic site manager, 
built on the Nimbus toolkit [11], to dynamically and securely 
extend existing physical clusters with IaaS cloud resources. 
Our elastic site manager interfaces directly with local resource 
managers, such as Torque [5].  We discuss our implementation 
in detail, including specifics about how we addressed the 
applicable challenges previously mentioned. We also develop 
and evaluate policies for resource provisioning on a Nimbus-
based cloud at the University of Chicago (UChicago), another 
at Indiana University (IU), and the Amazon Elastic Compute 
Cloud (EC2) [2]. 

We demonstrate a dynamic and responsive elastic cluster, 
capable of responding effectively to a variety of job submission 
patterns. We also demonstrate that we can process 10 times 
faster by expanding our cluster up to 150 EC2 nodes. 

The remainder of the paper is organized as follows. In 
Section II we discuss the general approach of extending 
resources within a site and present our elastic site model, and in 
Section III we discuss our elastic site implementation for 
extending a batch scheduler with IaaS resources. We evaluate 
our implementation in Section IV, in Section V we discuss the 
related work in the field, and in Section VI we hypothesize 
possible avenues for future work. We conclude in Section VII. 

II. APPROACH 
In order to respond to changing demand a site could be 

extended in numerous ways. One option would be to modify 
individual applications so that they are able to locate, acquire, 
and utilize additional resources when they need them. For 
example, a batch scheduler (e.g. Torque) could be modified to 
boot a set of Virtual Machines (VM) in the Cloud and dispatch 
jobs to those VMs. However, the obvious downside to this 
approach is the requirement that every such application or 
piece of middleware be modified, resulting in applications 
possessing redundant functionality. A second, more extensible 
option would be to build an additional layer, separate from the 
applications, which is capable of measuring their workload and 
acquiring or releasing cloud resources when needed. This 
option allows any application to be extended, creating an 
elastic site. 

We have created an elastic site model that efficiently adapts 
services within a site, such as batch schedulers, storage 
archives, or Web services to leverage elastically provisioned 
IaaS cloud resources in response to changes in demand as 
shown in Figure 1. In order for the elastic site to make 
intelligent decisions, various technical, logistical, and 
economic differences between cloud providers must be 
considered. Simply acquiring the maximum resources needed 
to handle an increase in demand may be technically feasible, 
however, it may not make sense financially. Cloud nodes must 
also be preconfigured to perform a role within the site once 
launched, or they must be configured dynamically as they are 
launched. 

We focus specifically on integrating our elastic site 
architecture with a batch scheduler where additional worker 
nodes are dynamically acquired or released from a cloud based 
on changes in the cluster job queue. This design limits the 
amount of interaction a user must have with such a system. 
While a user would undoubtedly be aware that the system 
leveraged cloud resources to execute his or her jobs, the user 
wouldn’t be required to know the specifics about the 
underlying cloud, nor how to integrate cloud nodes securely. A 
user would simply submit their jobs to the queue in order to use 
elastic site. In the following section we describe the process of 
manually adding a physical node to a cluster, much of which 
must be automated for elastic site. 

A. Adding a Worker Node to a Cluster 
Assuming the node has already been purchased and 

delivered to the site, an operating system must then be installed 
on the node. Once installation is complete the node will need 
the necessary patches applied to it and be configured properly, 
for example, unnecessary services should be terminated. 
Required software and libraries will need to be installed, most 
likely including the cluster's version of MPI and common 
scientific libraries. The node will also need file systems 
mounted (if necessary). At this point the cluster software will 
need to be installed on the node and configured to 
communicate with the cluster head node. If the node will not 
utilize a shared file system then the cluster software will need 

 
Figure 1.  Elastic Site Model 



to be configured to support the exchange of input and output 
data. If the cluster is using any licensed software then licenses 
for the node would need to be acquired. 

In order to dynamically add a node to a site, similar steps 
must be performed. However, for IaaS cloud nodes, the vast 
majority of these steps can be performed offline and only once. 
For instance, we can create one VM image offline installing the 
operating system, applying patches, configuring services, and 
adding software and libraries. This base image can then be used 
on multiple clouds without modification. The remainder of the 
steps can only be completed when the node is actually 
deployed on a specific cloud, which we address in the 
following section. 

B. Contextualization 
Contextualization of the node can only be performed when 

the node has been deployed in a particular context. The node 
must be configured to communicate properly with the site, such 
as configuring the remote node to exchange input and output 
data with the cluster head node or mounting a shared file 
system on the remote node. Additionally, a secure context must 
be established between the remote nodes and the site resources. 

One solution to address contextualization that has been 
developed by the community is the Nimbus Context Broker 
[13]. Generally, the Context Broker is a Web Service that 
facilities the secure exchange of context-specific information 
(e.g. IP addresses, SSH keys, etc.) between all appliances 
deployed together in a specific context. Each appliance 
contains a contextualization agent that securely communicates 
with the Context Broker on boot and configures the appliance 
to fulfill a specific role within the context. For example, a 
cluster of nodes may be launched in the cloud where one node 
is configured as a cluster head node and the remaining nodes 
are configured as compute nodes. The contextualization agent 
in each node provides the node’s SSH key and IP address to the 
Context Broker, which then communicates it to the other 
nodes. Once a node receives the information for the other 
nodes, the contextualization agent completes the configuration 
of the node as either a compute node or the cluster head node, 
depending on the role that was specified. 

C. Architecture and Policies 
Elastic site dynamically adds and removes worker nodes 

from the cluster by monitoring the cluster job queue. As part of 
elastic site we have developed a queue sensor that examines the 
cluster job queue and maintains a complete picture of the 
queue, including total number of jobs in the queue, the number 
of running jobs, the number of queued jobs, and total job 
queued time. The queue sensor also collects job-specific 
information, such as walltime for individual jobs.  

Elastic site uses various policies to determine when to boot 
additional VMs in the cloud or terminate them based on the 
information provided by the queue sensor. The policies form 
the core decision-making process of elastic site. The policies 
also use an estimated waste time that should be gathered for 
possible cloud providers. The estimated waste time is simply 
the sum of average startup times and shutdown times for a 
particular VM image on a cloud. This waste is considered in 

the decision making process implemented by policies. We have 
created three initial policies for elastic site:  

• On demand: The on demand policy is very basic: when 
a new job is queued, the policy boots one VM. When 
the queue is empty the policy terminates idle VMs. 

• Steady stream: The steady stream policy assumes that 
there will potentially be a "steady stream" of jobs 
arriving in the queue, thus it always leaves at least one 
VM running. By leaving one VM running this policy is 
able to avoid the thrashing caused by the on demand 
policy when a job arrives shortly after the last VM has 
been terminated. The steady stream policy also boots 
additional machines when the total queued walltime 
becomes greater than five times the estimated waste 
time of the particular cloud. However, the policy only 
starts one machine at a time, i.e., it waits until a VM 
has finished booting before it decides to boot another 
VM. The policy terminates any additional machines 
when the total queued walltime drops below three 
times the estimated waste time of the cloud. With this 
policy the cluster is able to respond to work 
immediately, however, it is the most conservative to 
adjust to changes in demand. 

• Bursts: The bursts policy is intended for jobs that arrive 
in bursts. Once a burst arrives we want to boot enough 
machines so that the estimated waste time is balanced 
appropriately with the amount of work in the queue. 
Therefore, to calculate the number of VMs to launch, 
we divide the total wall time of all queued jobs by two 
times the estimated waste time. If the integer division 
results in zero then a single VM is booted. 

We believe that many other job arrival patterns also fall into 
one of these three broad categories. For instance, sporadic job 
arrivals should use the on demand policy or bursts policy. The 
bursts policy will typically boot fewer VMs than the on 
demand policy, however, if each of the jobs has a lengthy 
runtime then the jobs should perhaps be assigned to their own 
VMs, as attempted by the on demand policy. Furthermore, it 
should be noted that these policy definitions are an initial test 
set and not a comprehensive set encompassing all possible job 
patterns. Our intent is not that these policies would prove to be 
the best possible method for managing VMs, but instead that 
they would provide a viable starting point in our examination 
of an elastic cluster. Specifically, in the case of the steady 
stream policy our choice to start additional VMs when the total 
queued walltime is greater than five times the estimated waste 
time and terminate VMs when the total queued walltime drops 
below three times the estimated waste time is an initial attempt 
to create a responsive but not wasteful policy aimed at a 
particular job submission pattern. We expect that more 
extensive examination will result in further adjustments to 
these bounds. 

In the following section we discuss implementation specific 
details for our elastic site architecture. 

III. IMPLEMENTATION 
Our elastic site manager, written in Python, is built upon a 

Linux cluster and the Torque batch scheduler. The elastic site 



manager monitors the job queue and responds by either 
launching a machine in the cloud, terminating one, or doing 
nothing as shown in Figure 2. Once a cloud machine has 
booted it joins the cluster as a worker node. If the cloud node 
operating system and libraries do not match those of the head 
node, applications can be linked statically, precompiled and 
deployed on the cloud nodes and saved into the image, or 
automatically compiled on the cloud node at deployment time.  

We make a number of simplifying assumptions in our 
prototype implementation. First, cloud nodes join as 
independent remote nodes; we have not deployed an overlay 
network, allowing the nodes to communicate with each other. 
Thus, these nodes are only capable of running serial jobs or 
small parallel jobs, limiting them to the execution of small 
parallel programs or many serial programs, such as workflows 
often categorized as Many Task Computing (MTC) [16]. 
Second, we do not mount a shared file system on the remote 
nodes so all data must be transferred in and out from the node. 
Currently this is done via Torque's use of SCP for file transfers. 

A. Leveraged Technologies 
Our elastic site implementation relies on IaaS technologies 

such as EC2 [2] and the Nimbus Workspace Service [11] 
deployed on Science Clouds [19]. The Nimbus Workspace 
Service is responsible for deploying nodes on the Nimbus 
cloud, as requested by the cloud client. The Workspace Service 
initiates the transfer of the VM image from the storage pool to 
the nodes. Once the VM image has been deployed, the 
Workspace Service begins the boot process. As the nodes begin 
to boot they enter the contextualization phase. 

We rely on the Nimbus Context Broker [13] to provide 
contextualization of the nodes. The Nimbus Context Broker 
provides a secure mechanism for dynamically contextualizing a 
set of virtual appliances. We use the Context Broker to create a 
trusted environment between the newly deployed cloud worker 
nodes and the cluster head node.  

B. Adding a Resource to a Site Dynamically 
Before we add a cloud resource to a site, we first create the 

VM image and save it in the different clouds we will be 
utilizing. We install all of the necessary software and libraries 
as well as the Torque client software. Torque is free open-
source software, so there is no need to acquire licenses for the 
cloud nodes. For simplicity, the Torque client (pbs_mom 
process) is preconfigured to join the cluster head node on boot. 
If there is an external firewall between the cloud and the cluster 
head node, the necessary ports must be opened for Torque and 
SSH to function properly. Opening ports in an external firewall 
can be especially problematic if there isn't a static range of IP 
addresses that cloud nodes will be associated with. One 
alternative is to allow traffic from any IP over the necessary 
ports to reach the head node. A host-based firewall can then be 
used on the head node to open access dynamically to the cloud 
nodes. The elastic site manager can interface directly with host-
based firewalls to open communication with the cloud nodes. 
The current implementation includes support for iptables. 

The Nimbus Context Broker handles the transfer of the 
SSH keys from the booted cloud nodes to the cluster head 
node. Elastic site then adds the keys (and associated hostnames 

and IP addresses) to the global ssh_known_hosts file. For 
simplicity, we preconfigured the cloud image to automatically 
trust the cluster head node.  

Elastic site uses the Nimbus cloud client to launch or 
terminate nodes on Nimbus-based clouds or EC2. As this is an 
initial prototype, elastic site also uses Torque command line 
programs to monitor the queue and available nodes, as well as 
dynamically add and remove nodes from Torque. 

C. Implementation of the Queue Sensor and Policy Modules 
Elastic site runs in a loop periodically examining the job 

queue, executing a policy, and performing cluster management 
functions, such as terminating nodes that have been flagged for 
shutdown by the policy. Due to the time required to launch a 
VM, we have created a thread pool to launch machines in 
parallel. The threads (default of 10) work from a single “deploy 
node” queue to launch machines. The short and consistent time 
required to terminate a machine allows the main elastic site 
thread to terminate nodes serially, when needed. In order to 
avoid overloading the cluster head node with rapid calls to 
system commands (e.g. qstat and pbsnodes), elastic site sleeps 
for a duration specified by the cluster administrator. We have 
found that sleeping for 10 to 15 seconds is a reasonable amount 
of time to limit the impact on the head node as well as provide 
a very responsive and dynamic cluster. 

We have implemented a queue sensor to monitor the 
Torque queue and gather job information. The queue sensor 
parses the output of Torque's qstat command and stores the 
information in a Python queue object that we have created. We 
have also created a Python cluster object, which stores all of 
the relevant information about the cluster, such as the number 
of running cloud nodes and the number of cloud nodes that are 
available for work. The cluster object also contains methods for 
manipulating the cluster, such as launching or terminating 
VMs. 

Policies are implemented as individual Python modules. 
Policies have access to the cluster and queue objects and can 
use this representation of the system in order to determine if 
additional nodes are needed or if nodes may be terminated. The 
policies themselves are responsible for directly manipulating 
the cluster object by calling methods to either launch VMs or 

 
Figure 2.  Elastic Site Implementation 
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schedule them for termination. When a node is scheduled for 
termination it is not terminated immediately, instead the node is 
flagged offline by the Torque 'pbsnodes -o' command, allowing 
a running job to complete. A node flagged offline is not 
assigned additional work by Torque, which then allows the 
elastic site program to terminate the node once it becomes idle. 
This avoids the problem of killing the node prematurely and 
possibly losing data. Currently, the estimated waste time is 
represented as a single number, in seconds, which is the sum of 
the time to boot a VM image on a particular cloud and the time 
to terminate the VM. This number can simply be a best guess 
to help policies make more intelligent decisions. The elastic 
site manager doesn’t currently support a mechanism to specify 
numerous estimated waste times, depending on the number of 
nodes booting or differing VM image size, both of which may 
impact boot time in cloud environments. 

The policy framework of elastic site is meant to be 
extensible, allowing administrators to customize or define their 
own policies to fit the needs of their users. The primary reason 
we choose to implement policies as Python modules instead of 
creating our own policy definition language was to minimize 
the learning curve for administrators adopting our solution. We 
find that very detailed and customized languages are often too 
complicated and frustrating for users to learn for a single 
purpose, diminishing the desire of users wishing to adopt our 
implementation of elastic site. Python is a widely used 
language that is easy to learn and robust enough to define any 
policy, no matter how simple or complicated. 

IV. EVALUATION 
Our evaluation of elastic site consists primarily of a 

comparison of the three different policies in an attempt to 
maximize job turnaround time while minimizing thrashing 
(constantly launching and terminating VMs) and idle VMs 
(VMs running with no available work). Comparing the 
performance of different cloud providers, and by extension, the 
underlying node hardware, network, and software deployed by 
those providers is beyond the scope of our work. These topics 
have been addressed elsewhere in the literature: [6], [9], [10], 
[15], and [22]. 

The evaluation environment consists of a cluster head node 
at the University of Colorado at Boulder. The head node has 
two 2.4 GHz Intel Xeon processors with hyper-threading and 6 
GB of RAM. We provide an initial comparison between the 
Nimbus cloud at the UChicago and the cloud at IU; however, 
we chose to use the UChicago cloud for the remainder of the 
analysis since it provided a more consistent environment when 
booting multiple VMs simultaneously. To demonstrate that our 
elastic site implementation scales beyond a handful of nodes 
we use Amazon EC2.  

The IU cloud consists of 2 nodes. Each node has 2 Quad 
Core Xeon processors with 32 GB of RAM and a single SATA 
disk. The Nimbus cloud at the University of Chicago has 16 
nodes, each with two 2.2 GHz AMD64 processors and 4 GB of 
RAM. Each node also has a local 80 GB IDE disk. The storage 
repository is exposed as a GridFTP service running on the 
service node. For our analysis with the Nimbus cloud at 
UChicago we specified a maximum of 10 cloud nodes. Thus, a 
policy may choose to deploy up to 10 nodes, but no more.  

To demonstrate scale we use Amazon EC2 small instance 
machines, without specifying a maximum limit on the number 
of nodes available to the elastic site. Small instances contain 1 
virtual core (equivalent to a 1-1.2 GHz 2007 Xeon processor), 
with 1.7 GB of memory, and only what Amazon denotes as 
“moderate” I/O. 

As a metric, we define elapsed workload time to be the 
elapsed time between the arrival of the first job in the workload 
to the completion of the final job in the workload. As another 
metric we define overhead to be the amount of time VMs are 
active but not running jobs. Startup and termination time are 
considered overhead, as well as idle run time. Finally, we 
define the metric queue wait time to be the amount of time a 
job must wait in the queue before it begins execution. This 
includes the time from when the job was first submitted until it 
is dispatched by Torque to the worker node and begins running.  

In addition to these metrics we consider the reactiveness of 
the three policies. We define the reactiveness of a policy to be 
its ability to respond quickly and effectively to changes in 
demand. In our analysis we observe the reactiveness of all three 
policies for three unique workloads that consist of job arrival 
patterns specific to the policy. 

Our workloads use short running jobs because of our 
interest in evaluating and analyzing the overhead and 
reactiveness of the policies. Longer running jobs simply 
amortize the boot and termination overhead of the VMs, thus a 
two minute boot time is basically irrelevant if you are running a 
24-hour job. 

Jobs are submitted directly to the Torque queue on our 
cluster head node. A job consists of a small C program that 
sleeps for the desired time. The only input is a parameter 
passed to the program specifying the sleep time and the only 
output is the small error and output files generated by Torque, 
which are transferred back to the head node via SCP. The job 
walltime is set to be one minute more than the runtime of the 
job. 

A. Understanding the Characteristics of Launching and 
Terminating Cloud Nodes 
Prior to our evaluation of the policies we must first 

understand the basic characteristics of the cloud provider we 
intend to use. We are primarily interested in the amount of time 
required to start a VM and shutdown a VM. We have found 
that termination time is often under 10 seconds and relatively 
consistent across clouds since it involves a Web service 
invocation which returns after the termination process has 
begun. The startup time, however, varies between providers 
depending on the underlying hardware and network as well as 
the configuration of the cloud. For example, if a cloud caches a 
recently used VM image on the nodes it will achieve much 
quicker boot times on average than if the VM image must be 
transferred from a storage pool to the nodes for every boot. The 
number of nodes also impacts startup time as well as the size of 
the VM image. We have found that these are primarily related 
to the network between the nodes and the storage pool: a large 
VM image takes longer to transfer and multiple nodes booting 
cause contention on the network. Another factor that may 
impact boot time is the amount of configuration that must be 



done during the contextualization phase, especially if 
information must be exchanged between large numbers of 
nodes. Lastly, the demand on the cloud at a given time can also 
impact the responsiveness of the cloud. A heavily utilized 
cloud will have more network contention as many users 
attempt to boot nodes. The cloud may also oversubscribe nodes 
to meet heightened demand. 

These differences in boot time are clearly demonstrated by 
a comparison of the boot time on the UChicago cloud vs. the 
IU cloud as shown in Figure 3. The IU cloud can boot a single 
VM approximately 34 seconds quicker than the UChicago 
cloud. However, interestingly, when both clouds boot five 
VMs, the UChicago cloud (Figure 5) slows down consistently 
across all five VMs whereas on IU (Figure 6) one VM still 
boots around 60s. The remaining four VMs on IU slow down 
significantly more, talking almost 20 seconds longer than all 
five UChicago VMs. We suspect that the unique behavior on 
the IU cloud is due to the underlying hardware. In particular, 
each of the two nodes only has a single SATA disk. On both 
the UChicago cloud and the IU cloud we observed termination 
times of 6 seconds plus or minus a second. 

B. Evaluation of the Policies 
We have devised two workloads to evaluate the metrics. 

The first workload consists of a submission of 20 60-second 
jobs. This workload demonstrates a potential use case for the 
bursts policy. The second workload consists of submitting 10 

60-second jobs 30 seconds apart followed by five minutes of 
sleeping. Then 10 120-second jobs are submitted 10 seconds 
apart. This workload is considered a potential use case for the 
steady stream policy. As a baseline we also submit these 
workloads to a cluster in which, prior to submission, we launch 
10 machines and integrate them into the cluster; this is referred 
to as the dedicated policy. 

The elapsed workload time is shown in Figure 7. The 
dedicated policy processes both workloads in the least amount 
of time; this is to be expected since there are 10 VMs booted 
and available when the jobs are submitted. The slight 
differences between the on demand policy and the bursts 
polices are interesting: both policies attempt to boot enough 
VMs to process the jobs with the on demand policy simply 
booting one VM per queued job (until 10 VMs have been 
launched) whereas the bursts policy weighs the total queued 
walltime with the estimated waste time for launching a VM. 
Because 20 jobs are submitted in workload 1 the on demand 
policy boots the maximum number of VMs, 10, and the bursts 
policy only boots 6 VMs yet processes the workload in less 
time. Booting more VMs takes additional time so the bursts 
policy is able to start processing the workload before the on 
demand VMs finish booting. The elapsed workload time for 
these policies is reversed under workload 2. In this case both 
policies are able to process the first set of jobs and terminate 
the VMs, when the second batch of 10 120 seconds arrive the 
on demand policy boots 10 VMs, one machine for each job, 

  
Figure 3.  Comparison of startup times (with standard deviation) for 1 VM 
on the Nimbus clouds at the University of Chicago and Indiana University. 

Figure 4.  Actual queue wait time, in seconds. All jobs are one minute jobs 
with two minute walltimes, submitted simultaneously. 

  
Figure 5.  Startup times of 5 VMs (with standard deviation), launched 

simultaneously, on the Nimbus cloud at the University of Chicago. 
Figure 6.  Startup time of 5 VMs (with standard deviation), launched 

simultaneously, on the Nimbus cloud at Indiana University. 
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and the bursts policy boots seven VMs. Because of the longer 
runtime, 10 VMs are able to process the workload faster.  

Figure 8 shows the corresponding overhead for the two 
workloads. The overhead presented in the figure is the sum of 
the overhead for all machines utilized. It should be noted that 
the dedicated case for workload 1 is somewhat misleading. 
Overhead is only calculated as the overhead that is incurred 
during the actual test, which is the duration from the time the 
first job is submitted to the time the final job completes. 
Understandably, the dedicated policy, with 10 running VMs, is 
able to quickly process the entire workload with very minimal 
overhead. Workload 2 is a more accurate representation of the 
overhead associated with a dedicated set of always-on 
machines where there may be large periods of time that 
numerous machines remain idle.   

Perhaps the most interesting comparison is between the 
steady streaming policy overhead and run time for workload 2. 
This is a perfect example of the need to balance job turnaround 
time with system overhead. Even though the steady stream 
policy achieves minimal overhead, it takes the most time to 
process the workload. The reason for this is due to the fact that 
the steady stream policy is the most conservative policy when 
adjusting to changes in demand, thus, to process the workload 
it uses the least number of VMs, which reduces unnecessary 
overhead booting extra VMs, but it also means that the 
workload takes longer to process. Though none of our policies 
out perform the dedicated policy, we are able to achieve lower 
levels of overhead than the dedicated policy as demonstrated 
by workload 2.  

Figure 4 shows the queue wait time for the three policies 
for a test similar to workload 1, we submitted an additional 40 
jobs to show the contrast between the three policies. Initially 
jobs have the shortest queue wait times when using the steady 
stream policy since one machine is constantly running, 
awaiting work. Both the on demand and bursts policies must 
first boot nodes before jobs can begin executing. This 
demonstrates the conservative aspect of the steady stream 
policy. While the bursts and on demand policy boot enough 
machines to address the total demand in the queue, the steady 

stream policy slowly processes the jobs and boots one VM at a 
time until it determines that no more machines are needed. 
Thus, in the case of the steady stream policy we see a point 
where the queue wait time of the jobs exceeds the wait time of 
those being processed by the on demand and bursts policy. 

C. Reactiveness of Policies 
To examine the reactiveness of the policies we devised 

three reactivity tests, each with unique job submission patterns. 
The first test emphasizes the sporadic nature of job arrivals 
addressed by the on demand policy. Ten jobs, each with a 
runtime randomly chosen between one and ten minutes are 
submitted at random times over the course of an hour. The 
second test, aimed at the steady stream policy where jobs arrive 
in a relatively consistent and steady manner, consists of a 15 
minute interval where one to ten minute jobs arrive three 
minutes apart, followed by a 15 minute period with only two 
one to ten minute jobs. The final 30 minutes of the test is 
comprised of one-minute jobs arriving once per minute. The 
third test is comprised of bursts of job submissions: 40 one to 
five minute jobs are submitted, followed 20 minutes later 15 
ten minute jobs, which are followed 20 minutes later by 60 one 
minute jobs. 

Figure 9 clearly shows the ability of the on demand policy 
to react to the queue by matching the number of VMs with the 
number of jobs. The one to two minute delays between jobs 
and VMs is the time that the VM is booting. Figure 10 
demonstrates the ability of the steady stream policy to use a 
minimum number of VMs to constantly process jobs, while 
booting additional VMs to process additional jobs when 
needed. Finally, in Figure 11 the bursts policy boots the 
necessary number of VMs to process bursts of jobs, 
terminating the VMs as the queue drains. Due to the large 
number of jobs submitted the policy boots 10 machines for 
each bursts and then terminates them when the burst of jobs has 
been processed. In Figure 11, the running VMs in the second 
burst of jobs overlap with jobs from the third burst because the 
VMs were flagged to be terminated prior to the arrival of the 
third set of jobs. Once a VM has been flagged for termination 
(i.e. the policy determines that the VM should be terminated 

  
Figure 7.  Elapsed time (seconds) of the workload, from submission of the 
first job to completion of the final job. For the dedicated policy 10 VMs are 

started prior to submission and run for the duration of the test. 

Figure 8.  Total overhead per policy. Overhead shown is the sum of the 
overheads for all VMs associated with each workload and policy. 
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when it has finished running its assigned jobs), our current 
system does not allow the VM to be “unflagged.” Instead, the 
machine is terminated and another VM must be booted in its 
place if there is enough work remaining to justify additional 
resources. 

D. Scalability of Elastic Site 
To demonstrate the scalability of our elastic site 

implementation we submit the third reactivity test with 10 
times the number of jobs to an elastic cluster with EC2 
compute nodes. The workload consists of 400 one to five 
minute jobs submitted initially and 20 minutes later 150 ten 
minute jobs are submitted, followed 20 minutes later by 600 
one minute jobs. We do not limit the number of VMs available 
to the elastic site manager. We used the bursts policy for this 
test.  

In switching to EC2 we made one change to our default 
configuration: we reduced the number of VM launching 
threads in the thread pool to six, down from 10, in order to 
reduce the strain on our cluster head node. Ten threads were 
manageable when we only used the Nimbus cloud client and it 
was only possible to boot a total of 10 VMs. However, the 
addition the EC2 Java-based tools and the possibility to launch 
machines continually, for the duration of the test, produced a 
noticeable and lasting increase in load on the head node. 

Prior to test submission we launched a handful of VMs on 
EC2 to gather startup and shutdown times for EC2 nodes. EC2 
exhibited much more inconsistent boot times than our Nimbus 
clouds. We launched a handful of VMs and observed boot 
times varying from 74 seconds to 205 seconds. Termination 
invocation times were consistently around three to four 
seconds. Our evaluation with EC2 (Figure 12) shows that 
elastic site able to process 10 times the number of jobs within 
60 minutes, similar to our much smaller test case on the 
UChicago cloud. However, EC2 grows up to 151 VMs in order 
to accomplish this. We see an increase in approximately 15 
times the number of VMs to process 10 times the work over the 
60-minute interval.  

V. RELATED WORK 
Related work can broadly be grouped into two categories: 

solutions that dynamically adapt to changing demand by 
acquiring or releasing resources and solutions that integrate 
with cloud computing resources to provide additional compute 
or storage capacity when needed. 

VioCluster [18] is a solution that adjusts dynamically to 
demand by borrowing and lending machines between different 
clusters. Typically, these clusters would be standard physical 
clusters where borrowed machines are provided as VMs on top 
of available physical nodes. Thus it is possible for a domain to 
be comprised of physical and virtual nodes. The 

  
Figure 9.  Reactiveness of the On Demand Policy Figure 10.  Reactiveness of the Steady Stream Policy 

  
Figure 11.  Reactiveness of the Bursts Policy Figure 12.  Reactiveness of the Bursts Policy on Amazon EC2 
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implementation is based upon Portable Batch System (PBS)-
based clusters and User Model Linux (UML). Violin provides a 
network overlay allowing the VMs of a remote domain to 
communicate directly with physical nodes in the local domain. 
VioCluster calculates whether to borrow machines (or whether 
it has machines available to lend) by counting the number of 
requested nodes in the queue and subtracting the number of 
available machines in the cluster. If the number is positive then 
this is the number of machines that need to be borrowed, if the 
number is negative then it is the number of machines the 
cluster has available to lend. Elastic site doesn’t borrow or lend 
machines; instead we only acquire nodes from the cloud when 
needed. The primary advantage of utilizing the cloud is its 
ability to offer a seemingly infinite number of resources, on 
demand, to anyone at anytime. There is no need to identify 
other independent clusters, which may or may not contain 
available nodes. 

Ruth et al. [17] create an adaptive environment of VMs that 
is able to adjust the environment based on measuring the 
current load within the VMs. Their adaptation manager can 
make per-host CPU and memory adjustments, migrate VMs to 
different nodes, or move an entire virtual environment to 
another set of resources. Our approach extends existing 
resources with cloud resources based on overall demand, which 
differs from their focus on creating individual, autonomous, 
adaptive environments capable of dynamically adjusting to 
load within the VMs. 

Murphy et al. [14] create a system to dynamically provision 
virtual organization clusters. The system is similar to our 
implementation in that they monitor a job queue and spawn 
VMs to process the jobs. The authors’ solution creates virtual 
clusters on Grid resources to process Condor jobs. Our work 
differs in several key aspects. We leverage cloud resources to 
extend site resources. Our model is generic and can be applied 
to any datacenter service even though our implementation 
specifically extends the Torque scheduler with cloud resources. 
We also create a handful of policies to dynamically respond to 
demand in an attempt to maximize job turnaround time and 
minimize overhead. The authors’ create and evaluate a single 
policy that corresponds to our on demand policy. 

Assuncao et al. [4] focus on scheduling strategies for 
individual jobs and the effect of those scheduling strategies on 
the overall cost of utilizing a cloud to provide compute 
resources in addition to existing site resources. Thus, 
depending on the scheduling strategy and job requirements, 
jobs are placed in a site queue or cloud queue. This differs from 
our approach where we schedule the actual creation and 
termination of VM instances in response to changes in a single 
queue. We allow Torque to dispatch the jobs on the resources. 
We do not consider the effect of individual job scheduling 
strategies on our system; this is an item to be considered in 
future work. Our policies focus solely on launching and 
terminating cloud VM instances in an attempt to maximize job 
turnaround time while minimizing the associated VM 
overhead.  

Evangelinos et al. [6] use on demand Amazon EC2 clusters 
as a platform to execute climate models. The authors create an 
interactive application capable of spawning EC2 nodes to 

execute the models. This is an example of an application-
specific extension to integrate support for a specific cloud. Our 
approach is more general, elastic site can be extended to 
monitor demand for any number of underlying applications as 
well as support a wide variety of clouds. Once elastic site 
supports a particular cloud provider, that provider can be made 
available to any application that can be monitored by elastic 
site.  

Recently, Sun Microsystems has added support for Amazon 
EC2 into Sun Grid Engine (SGE) [20]. This is a scheduler 
specific approach to dynamic cloud integration since only the 
demand of a single scheduler is monitored. Though our current 
implementation only supports the Torque resource manager, it 
can easily be extended to monitor any number of underlying 
schedulers or applications. 

In May of 2009 Amazon released Amazon CloudWatch [1], 
which enables EC2 users to monitor their usage on EC2. It also 
provides an auto-scaling feature allowing users to dynamically 
acquire or release EC2 instances depending on the load. 
However, this feature is specific to Amazon EC2, whereas our 
elastic site implementation can integrate extensibility sensors 
from multiple sources and work with multiple cloud 
implementations. Our solution also creates a secure context 
among the resources by leveraging the Nimbus Context Broker. 

VI. FUTURE WORK 
Our current implementation is only an initial prototype 

focused specifically on Torque-based clusters, Nimbus clouds, 
and Amazon EC2. In future work we will add support for 
additional resources managers and cloud providers. We will 
also address our assumption that the cloud nodes are isolated 
from each other and unable to perform collectively by 
leveraging network overlay solutions. Our implementation only 
supports the exchange of input and output data via Torque’s 
SCP capacities, future work could involve the creation and 
evaluation other methods to support data exchange between 
local resources and cloud resources, for example, a remote 
shared file system could be made available to cloud nodes.  

Our initial policy definitions are not comprehensive and it 
is likely that they will be modified to improve their efficiency 
for many types of job patterns. For example, one method might 
be to increase the responsiveness of a particular policy on 
clouds with quick VM boot and termination times. The 
evaluation of our initial policies also provide insight into other 
factors that should be thoroughly examined in future work, 
such as more effective methods to identify and integrate a 
cloud’s estimated waste time in cases where it varies widely, 
e.g. EC2. Our policies do not currently consider economic 
factors, such as Amazon’s charge-by-the-hour model where an 
EC2 instance running for 5 minutes costs the same as one 
running for 59 minutes. Policies should take this into account 
and leave a VM that’s been charged for an hour running for the 
duration of the hour, even if there is no available work. 
Currently, the selection and configuration of policies is done 
manually. A more effective method would be to create a layer 
on top of the policies capable of evaluating incoming demand 
and dynamically choosing the appropriate policy on the fly. 
Similarly, users could provide estimations for parameters like 
waste time; this would allow policies to make more intelligent 



decisions. Future work will also focus on the impact of job 
scheduling strategies to more effectively manage the placement 
of jobs on compute nodes. 

More generally, our elastic site model will be extended 
beyond typical cluster resources to support other services 
provided within a site, such as Web services and storage 
archives. Recent research also [12] focuses on bridging 
multiple cloud providers and using the resources together as a 
single entity, which would allow elastic site to provide a single 
extension to a site leveraging resources from multiple cloud 
providers. 

VII. CONCLUSIONS 
In this work we propose a model of an elastic site capable 

of responding to changes in demand by leveraging cloud 
resources. We create an implementation of this model that 
seamlessly and securely extends Torque clusters with Nimbus-
based clouds and Amazon EC2 on demand. We devised three 
policies, on demand, steady stream, and bursts to respond 
intelligently to changes in demand by acquiring or terminating 
cloud resources.  

We evaluate the policies under different workloads and 
examine their reactiveness to different job submission patterns. 
We also demonstrate that we can process 10 times faster by 
expanding our cluster up to 150 EC2 nodes. 
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